این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 18 آذر 1404
Iranian Journal of Public Health
، جلد ۵۰، شماره ۳، صفحات ۵۹۸-۶۰۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction of Breast Cancer Survival by Machine Learning Methods: An Application of Multiple Imputation
چکیده انگلیسی مقاله
Background: The low breast cancer survival rates in less developed countries are critical. The machine learning techniques predict cancers survival with high accuracy. Missing data are the most important limitation for using the highest potential of these techniques to predict cancers survival. Multiple imputation (MI) was implemented and analyzed in detail to impute the missing data of a breast cancer dataset. Methods: The dataset was from The Omid Treatment and Research Center Urmia, Iran between Jan 2006 and Dec 2012 and had information from 856 women. The algorithms such as C5 and repeated incremental pruning to produce error reduction were applied on the imputed versions of the original dataset and the non-imputed dataset to predict and extract clinical rules, respectively. Results: The findings showed the performance of C5 in all the evaluation criteria including accuracy (84.42%), sensitivity (92.21%), specificity (64%), Kappa statistic (59.06%), and the area under the receiver operator characteristic (ROC) curve (0.84), was improved after imputation. Conclusion: The dataset of the present study met the requirements for using the multiple imputation method. The extracted rules after the application of MI were more comprehensive and contained knowledge that is more clinical. However, the clinical value of the extracted rules after filling in the missing data did not noticeably increase.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Hadi Lotfnezhad Afshar
Department of Health Information Technology, School of Paramedical, Urmia University of Medical Sciences, Urmia, Iran
| Nasrollah JABBARI
Department of Medical Physics, Solid Tumor Research Center, School of Paramedical, Urmia University of Medical Sciences, Ur-mia, Iran
| Hamid Reza KHALKHALI
Department of Biostatistics and Epidemiology, Patient Safety Research Center, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| Omid ESNAASHARI
Omid Treatment and Research Center, Urmia, Iran
نشانی اینترنتی
https://ijph.tums.ac.ir/index.php/ijph/article/view/16101
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات