این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 5 دی 1404
Iranian Journal of Medical Physics
، جلد ۱۸، شماره ۲، صفحات ۸۹-۹۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Raman Spectroscopy-based Breast Cancer Detection Using Self-Constructing Neural Networks
چکیده انگلیسی مقاله
Introduction: Accurate and early diagnosis of cancer is an important issue in modern healthcare systems. Raman spectroscopy, as a non-invasive optical technique for evaluating intact tissues at a molecular level, has attracted the researchers’ attention. Despite recent advances, efforts are still being made to improve the sensitivity and specificity of Raman spectroscopy-based cancer detection. The present study aimed to identify three classes of breast tissues, that is, normal tissues, benign lesions, and cancer tissues, using an artificial neural network (ANN). Material and Methods: To improve the ANN discrimination power, a novel topologically optimized ANN, known as self-constructing neural network (SCNN), was developed in this study. The ant colony optimization algorithm was applied to optimize the topology of the network. The results of SCNN were compared with the conventional ANN, that is, multilayer perceptron (MLP). Results: Based on the results, the developed SCNN showed a classification accuracy of 95%. Conclusion: In this study, a novel neural network (SCNN) was proposed, which was topologically optimized to improve the discrimination power of ANNs. The SCNN accuracy was determined to be 95% in Raman spectroscopy-based breast cancer diagnosis.
کلیدواژههای انگلیسی مقاله
Artificial Neural Network Multilayer Perceptron Self, Constructing Neural Network Raman Spectroscopy Breast Cancer
نویسندگان مقاله
| Malihe Eshraghi-Arani
Department of Computer Engineering, Kashan Branch, Islamic Azad University, Kashan, Iran
| Zohreh Dehghani-Bidgoli
Department of Biomedical Engineering, Kashan Branch, Islamic Azad University, Kashan, Iran
نشانی اینترنتی
https://ijmp.mums.ac.ir/article_15519.html
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Paper
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات