این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Journal of Injury and Violence Research
، جلد ۱۴، شماره ۱، صفحات ۰-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Factors affecting driver injury severity in fatigue and drowsiness accidents: a data mining framework
چکیده انگلیسی مقاله
Background: Fatigue and drowsiness accidents are more likely to cause serious injuries and fatalities than other accidents. Statistics revealed that 20 to 40 percent of traffic accidents in Iran are due to drivers' fatigue. This study identified the most important factors affecting driver injuries in fatigue and drowsiness accidents. Methods: The Classification and Regression Tree method (CART) was applied 11,392 drivers were involved in fatigue and drowsiness accidents in three provinces of Iran, over the 7 years from 2011-2018. A two-level target variable was used to increase the accuracy of the model. First, dataset in each of three provinces was classified into homogeneous clusters using a two-step clustering algorithm. Oversampling method was used for imbalanced accident severity datasets. Then, classification was improved by boosting method. Results: The classification tree reveals that the month, time of day, collision type, and vehicle type were common factors. Also, driver's age was important in female drivers cluster; the geometry of the place and seat belt/helmet usage were important in urban roads cluster; and area type, road type, road direction, and vehicle factor were important in rural roads cluster. Also, the combination of the CART algorithm with oversampling and boosting increased the accuracy of the models. Conclusion: The analysis results revealed motorcycles, lack of using a helmet or seat belt, curvy roads, roads with two-way undivided and one-way movement direction increased the injury and death of drivers. Collision with fixed object, run-off-road, overturning, falling, and defective vehicles increased the severity of accidents. Female drivers older than 44 years old have a higher probability of fatality. Identifying the factors affecting the severity of driver injuries in such accidents in each province could assist in determining engineering countermeasures and training educational programs to mitigate these crash severities.
کلیدواژههای انگلیسی مقاله
Classification and regression tree (CART),Fatigue and drowsiness,Injury severity,Clustering analysis,Imbalanced data
نویسندگان مقاله
نشانی اینترنتی
https://jivresearch.org/jivr/index.php/jivr/article/view/1679
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Research Article
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات