این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
Journal of Medical Signals and Sensors
، جلد ۱۱، شماره ۴، صفحات ۲۷۴-۲۸۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Detection and Classification of COVID-19 by Lungs Computed Tomography Scan Image Processing using Intelligence Algorithm
چکیده انگلیسی مقاله
The latest World Health Organization statistics show that the number of people living with COVID-19 disease is now more than 42 million worldwide. Some diagnosis methods include detecting and observing clinical symptoms associated with the disease (fever, dry cough, shortness of breath, sore throat, and muscle fatigue). Some other methods, such as computed tomography (CT)-scan imaging from the lungs, are the more accurate diagnostic methods. In this study, we examine the types of abnormal COVID-19 can cause in the lungs of infected subjects and detect and classify this disease. In this paper, we used data from the lung's CT-scan images from the 79 participants. To do this, in this article, for processing CT-scan images of the lungs to diagnose and classification of the COVID-19 disease in men and women of different ages, for rapid diagnosis and high accuracy of this disease by the automatic classification algorithm is used. The final results showed that the proposed method could base on different categories (gender, age categories, and type of damage caused by COVID-19) with high detection and classification accuracy. The algorithm presented in this article has accurately identified the data of healthy subjects and patients with coronavirus.
کلیدواژههای انگلیسی مقاله
Classification, computerized tomography, COVID-19, detection, medical image processing
نویسندگان مقاله
| Naser Safdarian
Engineering Research Center in Medicine and Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| Nader Jafarnia Dabanloo
نشانی اینترنتی
http://jmss.mui.ac.ir/index.php/jmss/article/view/594
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Short Reports
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات