این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Health Education and Health Promotion
، جلد ۹، شماره ۳، صفحات ۲۲۹-۲۳۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Comparing of Machine Learning Algorithms for Predicting ICU admission in COVID-19 hospitalized patients
چکیده انگلیسی مقاله
Aims: The world hospital systems are presently facing many unprecedented challenges from COVID‐19 disease. Prediction the deteriorating or critical cases can help triage patients and assist in effective medical resource allocation. This study aimed to develop and validate a prediction model based on Machine Learning algorithms to predict hospitalized COVID-19 patients for transfer to ICU based on clinical parameters. Materials & Methods: This retrospective, single-center study was conducted based on cumulative data of COVID-19 patients (N=1225) who were admitted from March 9, 2020, to December 20, 2020, to Mostafa Khomeini Hospital, affiliated to Ilam University of Medical Sciences (ILUMS), focal point center for COVID-19 care and treatment in Ilam, West of Iran. 13 ML techniques from six different groups applied to predict ICU admission. To evaluate the performances of models, the metrics derived from the confusion matrix were calculated. The algorithms were implemented using WEKA 3.8 software. Findings: This retrospective study's median age was 50.9 years, and 664 (54.2%) were male. The experimental results indicate that Meta algorithms have the best performance in ICU admission risk prediction with an accuracy of 90.37%, a sensitivity of 90.35%, precision of 88.25%, F-measure of 88.35%, and ROC of 91%. Conclusion: Machine Learning algorithms are helpful predictive tools for real-time and accurate ICU risk prediction in patients with COVID-19 at hospital admission. This model enables and potentially facilitates more responsive health systems that are beneficial to high-risk COVID-19 patients.
کلیدواژههای انگلیسی مقاله
COVID‐19,Coronavirus,Machine Learning,Artificial Intelligence,Forecasting,Intensive Care Unit
نویسندگان مقاله
| A. Orooji
Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science (NKUMS), Bojnurd, Iran
| H. Kazemi-Arpanahi
Department of Health Information Technology, Abadan Faculty of Medical Sciences, Abadan, Iran
| M. Kaffashian
Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| Gh. Kalvandi
Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| M. Shanbehzadeh
Department of Health Information Technology, School of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran
نشانی اینترنتی
http://hehp.modares.ac.ir/browse.php?a_code=A-10-60945-3&slc_lang=en&sid=5
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات