این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Health Education and Health Promotion
، جلد ۸، شماره ۳، صفحات ۱۰۷-۱۱۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Computational Intelligence Approach to Detect Future Trends of COVID-19 in France by Analyzing Chinese Data
چکیده انگلیسی مقاله
Aims: Due to the terrible effects of 2019 novel coronavirus (COVID-19) on health systems and the global economy, the necessity to study future trends of the virus outbreaks around the world is seriously felt. Since geographical mobility is a risk factor of the disease, it has spread to most of the countries recently. It, therefore, necessitates to design a decision support model to 1) identify the spread pattern of coronavirus and, 2) provide reliable information for the detection of future trends of the virus outbreaks. Materials & Methods: The present study adopts a computational intelligence approach to detect the possible trends in the spread of 2019-nCoV in China for a one-month period. Then, a validated model for detecting future trends in the spread of the virus in France is proposed. It uses ANN (Artificial Neural Network) and a combination of ANN and GA (Genetic Algorithm), PSO (Particle Swarm Optimization), and ICA (Imperialist Competitive Algorithm) as predictive models. Findings: The models work on the basis of data released from the past and the present days from WHO (World Health Organization). By comparing four proposed models, ANN and GA-ANN achieve a high degree of accuracy in terms of performance indicators. Conclusion: The models proposed in the present study can be used as decision support tools for managing and controlling of 2019-nCoV outbreaks.
کلیدواژههای انگلیسی مقاله
Coronavirus, Pandemic, Artificial Neural Network, Genetic Algorithm
نویسندگان مقاله
| Z. Sazvar
Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| M. Tanhaeean
Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| S.S. Aria
Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| A. Akbari
Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| S.F. Ghaderi
Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| S.H. Iranmanesh
Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
نشانی اینترنتی
http://hehp.modares.ac.ir/browse.php?a_code=A-10-54895-1&slc_lang=en&sid=5
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات