این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
مجله حکیم سیداسماعیل جرجانی
، جلد ۸، شماره ۲، صفحات ۵۸-۷۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Two-stage Skin Lesion Segmentation from Dermoscopic Images by Using Deep Neural Networks
چکیده انگلیسی مقاله
Background and objective: Automatic semantic segmentation of skin lesions is one of the most important medical requirements in the diagnosis and treatment of skin cancer, and scientists always try to achieve more accurate lesion segmentation systems. Developing an accurate model for lesion segmentation helps in timely diagnosis and appropriate treatment. Material and Methods: In this study, a two-stage deep learning-based method is presented for accurate segmentation of skin lesions. At the first stage, detection stage, an approximate location of the lesion in a dermoscopy is estimated using deep Yolo v2 network. A sub-image is cropped from the input dermoscopy by considering a margin around the estimated lesion bounding box and then resized to a predetermined normal size. DeepLab convolutional neural network is used at the second stage, segmentation stage, to extract the exact lesion area from the normalized image. Results: A standard and well-known dataset of dermoscopic images, (ISBI) 2017 dataset, is used to evaluate the proposed method and compare it with the state-of-the-art methods. Our method achieved Jaccard value of 79.05%, which is 2.55% higher than the Jaccard of the winner of the ISIC 2017 challenge. Conclusion: Experiments demonstrated that the proposed two-stage CNN-based lesion segmentation method outperformed other state-of-the-art methods on the well-known ISIB2017 dataset. High accuracy in detection stage is of most important. Using the detection stage based on Yolov2 before segmentation stage, DeepLab3+ structure with appropriate backbone network, data augmentation, and additional modes of input images are the main reasons of the significant improvement.
کلیدواژههای انگلیسی مقاله
Dermoscopic images,Skin lesions,Semantic segmentation,Deep neural network
نویسندگان مقاله
| Fatemeh Bagheri
Department of Industrial Engineering, K. N. Toosi University of Technology, Pardis Street, Molla Sadra Ave, Tehran, Iran
| Mohammad Jafar Tarokh
Department of Industrial Engineering, K. N. Toosi University of Technology, Pardis Street, Molla Sadra Ave, Tehran, Iran
| Majid Ziaratban
Department of Electrical Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
نشانی اینترنتی
http://goums.ac.ir/jorjanijournal/browse.php?a_code=A-10-744-1&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
آمار زیستی
نوع مقاله منتشر شده
تحقیقی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات