این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Health Management and Informatics، جلد ۸، شماره ۱، صفحات ۶۸-۷۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Temporal Convolutional Learning: A New Sequence-based Structure to Promote the Performance of Convolutional Neural Networks in Recognizing P300 Signals
چکیده انگلیسی مقاله Distinguishing P300 signals from other components of the EEG is one of the mostchallenging issues in Brain Computer Interface (BCI) applications, and machine learningmethods have vastly been utilized as effective tools to perform such separation. Althoughin recent years deep neural networks have significantly improved the quality of the abovedetection, the significant similarity between P300 and other components of EEG in parallelwith their unrepeatable nature have led to P300 detection, which are still an open problemin BCI domain. In this study, a novel architecture is proposed in order to detect P300 signalamong EEG, in which the temporal learning concept is engaged as a new substructureinside the main Convolutional Neural Network (CNN). The above Temporal ConvolutionalNetwork (TCN) may better address the problem of P300 detection, thanks to its potentialin involving time sequence properties in modelling of these signals. The performance ofthe proposed method is evaluated on the EPFL BCI dataset, and the obtained results arecompared in two inter-subject and intra-subject scenarios with the results of classical CNNin which temporal properties of input are not considered. Increased True Positive Rate ofthe proposed method (an average of 4 percent) and its accuracy (an average of 2.9 percent)in parallel with the decrease in its False Positive Rate (averagely 3.1 percent) shows theeffectiveness of the TCN structure in promoting the detection procedure of P300 signals inBCI applications
کلیدواژه‌های انگلیسی مقاله EEG Signals, P300, Convolutional Neural Networks, Temporal Convolutional Networks, Deep Learning, Brain-Computer Interface

نویسندگان مقاله Mahnaz Mardi |
Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran

Mohamad Reza Keyvanpour |
Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran

Seyed Vahab Shojaedini |
Department of Biomedical Engineering, Iranian Research Organization for Science and Technology, Tehran, Iran


نشانی اینترنتی https://jhmi.sums.ac.ir/article_47605_e60ae94ddde0a8fcba5421503dc172b0.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات