این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Information and Communication Technology Research (IJICT، جلد ۱۳، شماره ۱، صفحات ۳۲-۳۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Detection of E-commerce Attacks and Anomalies using Adaptive Neuro-Fuzzy Inference System and Firefly Optimization Algorithm
چکیده انگلیسی مقاله Detection of attacks and anomalies is one of the new challenges in promoting e-commerce technologies. Detecting anomalies of a network and the process of detecting destructive activities in e-commerce can be executed by analyzing the behavior of network traffic. Data mining systems/techniques are used extensively in intrusion detection systems (IDS) in order to detect anomalies. Reducing the size/dimensions of features plays an important role in intrusion detection since detecting anomalies, which are features of network traffic with high dimensions, is a time-consuming process. Choosing suitable and accurate features influences the speed of the proposed task/work analysis, resulting in an improved speed of detection. The present papers utilize a neural network for deep learning to detect e-commerce attacks and anomalies of e-commerce systems. Overfitting is a common event in multi-layer neural networks. In this paper, features are reduced by the firefly algorithm (FA) to avoid this effect. Simulation results illustrate that a neural network system performs with high accuracy using feature reduction. Ultimately, the neural network structure is optimized by using particle swarm optimization (PSO) to increase the accuracy of attack detection capability.  
کلیدواژه‌های انگلیسی مقاله Firefly Algorithm, Attack Detection, Neural Network, PSO Algorithm

نویسندگان مقاله | Fereidoon Rezaei
Department of Information Technology Management Central Tehran Branch, Islamic Azad University Tehran, Iran


| Mohammad Ali Afshar Kazemi
Department of Industrial Management Central Tehran Branch, Islamic Azad University Tehran, Iran


| Mohammad Ali Keramati
Department of Industrial Management Central Tehran Branch, Islamic Azad University Tehran, Iran



نشانی اینترنتی http://ijict.itrc.ac.ir/browse.php?a_code=A-10-4364-1&slc_lang=other&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده other
موضوعات مقاله منتشر شده شبکه و امنیت
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات