این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Information and Communication Technology Research (IJICT، جلد ۱۲، شماره ۲، صفحات ۴۶-۵۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Thematic Similarity Multiple-Choice Question Answering with Doc2Vec: A Step Toward Metaphorical Language Processing
چکیده انگلیسی مقاله This paper reports our improvement over the previous benchmark of the task of answering poetic verses' thematic similarity multiple-choice questions (MCQs). In this experiment, we have trained a Doc2Vec model on a corpus of Persian poems and proceeded to use the trained model to get the vector representations of the poetic verses. Subsequently, the poetic verse among the options with the highest cosine similarity to the stem verse was selected as the correct answer by the model. This model managed to answer 38% of the questions correctly, which was an improvement of 6% over the previous benchmark. Provided that a large-scale thematic similarity MCQ dataset is developed, the performance of a language representation model on this task could be considered as a novel benchmark to measure the capacity of a model to understand metaphorical language.
کلیدواژه‌های انگلیسی مقاله Doc2Vec, MCQ answering, computational linguistics, poetry, figurative speech, digital humanities.

نویسندگان مقاله | Soroosh Soroosh Akef
Languages and Linguistics Center Sharif University of Technology Tehran, Iran


| Mohammad Hadi Hadi Bokaei
Department of Information Technology Iran Telecommunication Research Center Tehran, Iran


| Hossein Sameti
Department of Computer Engineering Sharif University of Technology Tehran, Iran



نشانی اینترنتی http://ijict.itrc.ac.ir/browse.php?a_code=A-10-4254-1&slc_lang=other&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده other
موضوعات مقاله منتشر شده فناوری اطلاعات
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات