این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 6 دی 1404
International Journal of Information and Communication Technology Research (IJICT
، جلد ۱۱، شماره ۳، صفحات ۴۲-۴۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Method for Anomaly Detection in Big Data based on Support Vector Machine
چکیده انگلیسی مقاله
In recent years, data mining has played an essential role in computer system performance, helping to improve system functionality. One of the most critical and influential data mining algorithms is anomaly detection. Anomaly detection is a process in detecting system abnormality that helps with finding system problems and troubleshooting. Intrusion and fraud detection services used by credit card companies are some examples of anomaly detection in the real world. According to the increasing volumes of the datasets that creates big data, traditional data mining approaches do not have efficient enough results. Various platforms, frameworks, and algorithms for big data mining have been presented to account for this deficiency. For instance, Hadoop and Spark are some of the most used frameworks in this field. Support Vector Machine (SVM) is one of the most popular approaches in anomaly detection, which-according to its distributed and parallel extensions-is widely used in big data mining. In this research, Mutual Information is used for feature selection. Besides, the kernel function of the one-class support vector machine has been improved; thus, the performance of the anomaly detection improved. This approach is implemented using Spark. The NSL-KDD dataset is used, and an accuracy of more than 80 percent is achieved. Compared to the other similar approaches in anomaly detection, the results are improved.
کلیدواژههای انگلیسی مقاله
detection, support vector machine, big data, improvement of anomaly detection, one-class support vector machine, Mutual Information
نویسندگان مقاله
| Masoud Harimi
Department of Computer Engineering University of Science and Culture
| Mohammad Javad Shayegan
epartment of Computer Engineering University of Science and Culture
نشانی اینترنتی
http://ijict.itrc.ac.ir/browse.php?a_code=A-10-4222-1&slc_lang=other&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
other
موضوعات مقاله منتشر شده
فناوری اطلاعات
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات