این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
International Journal of Mining and Geo-Engineering
، جلد ۵۵، شماره ۱، صفحات ۱-۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Application of Artificial Neural Network for Stability Analysis of Undercut Slopes
چکیده انگلیسی مقاله
One of the significant tasks in undercut slopes is determining the maximum stable undercut span. According to the arching effect theory, undercut excavations cause the weight of the slope to be transmitted to the adjacent stable regions of the slope, which will increase the stability of the slope. In this research, determining the maximum width of undercut slopes was examined through numerical modeling in the FLAC3D software. For this purpose, a series of undercut slope numerical models, with various slope angles, horizontal acceleration coefficients, and counterweight balance widths was conducted, and the results were validated using the corresponding experimental test results. The effect of each parameter on the maximum stable undercut span was investigated with an artificial neural network, where a multi-layer perceptron (MLP) model was performed. The results showed good accuracy of the proposed MLP model in the prediction of the maximum stable undercut span. In addition, a sensitivity analysis demonstrated that the dip angle and horizontal acceleration coefficient were the most and least effective input variables on the maximum stable undercut span, respectively.
کلیدواژههای انگلیسی مقاله
Undercut Slope, numerical modelling, Artificial Neural Network, Multi-layer Perceptron Model
نویسندگان مقاله
Hassan Sarfaraz |
School of Mining Engineering, College of Engineering, University of Tehran,Tehran, Iran
Mohammad Hossein Khosravi |
School of Mining Engineering, College of Engineering, University of Tehran,Tehran, Iran
Thirapong Pipatpongsa |
Department of Urban Management, Kyoto University, Japan
Hassan Bakhshandeh Amnieh |
School of Mining Engineering, College of Engineering, University of Tehran,Tehran, Iran
نشانی اینترنتی
https://ijmge.ut.ac.ir/article_77132_f6f42389bf749219d91471dd465710df.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات