این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
International Journal of Mining and Geo-Engineering
، جلد ۵۵، شماره ۱، صفحات ۱۹-۲۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A hybrid-based clustering algorithm for targeting porphyry copper mineralization at Chahargonbad district in SE Iran
چکیده انگلیسی مقاله
This work presents a hybrid-based clustering approach for mineral potential mapping (MPM) of porphyry-type Cu mineralization at Kerman province in the SE of Iran. Whereby a multidisciplinary geospatial data set was processed and integrated in the Chahargonbad district. Data-driven prediction-area (P-A) plots were drawn for each evidence layer derived from geological, geochemical, geophysical and satellite imagery data. The P-A plots provide insight into the weight of evidence for synthesizing all geospatial layers. Out of many knowledge-driven methods which biasing from experts' opinions, index overlay and fuzzy operators were employed to find out an optimum Cu favorability map through calculating an efficiency index representing the performance of each MPM. A concentration-area (C-A) fractal model was implemented to separate the mineral favorability map into some populations to ensure correct determining the cluster numbers. Clusters number is a prerequisite which must be defined correctly to increase the performance of clustering analysis for generating reliable results in MPM. Such an appropriate number of clusters can be incorporated in running three prevalent groups of clustering methodologies as data-driven approaches in MPM. They are self-organizing map, fuzzy c-means, and k-means algorithms. One of the reasons for this tendency to consider a hybrid-based method is that it overcomes the shortcomings of the both methods (bias of experts’ opinions and unknown clusters number) in mineral favorability mapping. The unknown number of clusters was determined through a knowledge-driven method, and then it was passed to an unsupervised data-driven method, i.e. clustering algorithm. This hybrid method produces synthesized maps in close association with known porphyry-Cu mineralization in the Chahargonbad area.
کلیدواژههای انگلیسی مقاله
Clustering, hybrid method, Mineral Potential Mapping, Porphyry copper, Chahargonbad
نویسندگان مقاله
Hossein Rahimi |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
Maysam Abedi |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
Abbas Bahroudi |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
Mohammad Javad Rezapour |
Geo-Exploration Targeting Lab (GET-Lab), School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
Gholam-Reza Elyasi |
Geo-Exploration Targeting Lab (GET-Lab), School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
Soheila Aslani |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
نشانی اینترنتی
https://ijmge.ut.ac.ir/article_78442_787a5e6b635609ffed287cbdd9dbf6f9.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات