این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Electrical and Electronic Engineering، جلد ۱۸، شماره ۱، صفحات ۲۱۳۱-۲۱۳۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Fuzzy Grasshopper Optimization Algorithm: A Hybrid Technique for Tuning the Control Parameters of GOA Using Fuzzy System for Big Data Sonar Classification
چکیده انگلیسی مقاله In this paper, multilayer perceptron neural network (MLP-NN) training is used by the grasshopper optimization algorithm with the tuning of control parameters using a fuzzy system for the big data sonar classification problem. With proper tuning of these parameters, the two stages of exploration and exploitation are balanced, and the boundary between them is determined correctly. Therefore, the algorithm does not get stuck in the local optimization, and the degree of convergence increases. So the main aim is to get a set of real sonar data and then classify real sonar targets from unrealistic targets, including noise, clutter, and reverberation, using GOA-trained MLP-NN developed by the fuzzy system. To have accurate comparisons and prove the GOA performance developed with fuzzy logic (called FGOA), nine benchmark algorithms GOA, GA, PSO, GSA, GWO, BBO, PBIL, ES, ACO, and the standard backpropagation (BP) algorithm were used. The measured criteria are concurrency speed, ability to avoid local optimization, and accuracy. The results show that FGOA has the best performance for training datasets and generalized datasets with 96.43% and 92.03% accuracy, respectively.
کلیدواژه‌های انگلیسی مقاله Classification, Fuzzy System, Grasshopper Optimization Algorithm, MLP-NN, Sonar.

نویسندگان مقاله | A. Saffari
Faculty of Electrical Engineering and Computer, University of Birjand, Birjand, Iran.


| S. H. Zahiri
Faculty of Electrical Engineering and Computer, University of Birjand, Birjand, Iran.


| M. Khishe
Department of Electronic, Imam Khomeini Marine Science University, Nowshahr, Iran.



نشانی اینترنتی http://ijeee.iust.ac.ir/browse.php?a_code=A-10-2059-4&slc_lang=en&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده 5-Radar and Sonar
نوع مقاله منتشر شده Research Paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات