این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 6 دی 1404
Iranian Journal of Mathematical Sciences and Informatics
، جلد ۱۵، شماره ۲، صفحات ۱۸۳-۱۹۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Sharply $(n-2)$-transitive Sets of Permutations
چکیده انگلیسی مقاله
Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called emph{sharply $t$-transitive} if for any given pair of $t$-tuples, exactly one element of $S$ carries the first to the second. In addition, a subset $S$ of $S_n$ is called $t$-intersecting if $fix(h^{-1}g)geq t$ for any two distinct permutations $h$ and $g$ of $S$. In this paper, we prove that there are only two sharply $(n-2)$-transitive subsets of $S_n$ and finally we establish some relations between sharply $k$-transitive subsets and $t$-intersecting subsets of $S_n$ where $k,tin mathbb{Z}$ and $0leq tleq kleq n$.
کلیدواژههای انگلیسی مقاله
Symmetric group, Sharply transitive set of permutations, Cayley graph, Intersecting set of permutations
نویسندگان مقاله
| M. N. Iradmusa
Shahid Beheshti University
نشانی اینترنتی
http://ijmsi.ir/browse.php?a_code=A-10-3007-1&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
تخصصی
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات