این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۹، شماره ۴، صفحات ۴۳۹-۴۴۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Object Segmentation using Local Histograms, Invasive Weed Optimization Algorithm and Texture Analysis
چکیده انگلیسی مقاله Most of the methods proposed for segmenting image objects are supervised methods which are costly due to their need for large amounts of labeled data. However, in this article, we have presented a method for segmenting objects based on a meta-heuristic optimization which does not need any training data. This procedure consists of two main stages of edge detection and texture analysis. In the edge detection stage, we have utilized invasive weed optimization (IWO) and local thresholding. Edge detection methods that are based on local histograms are efficient methods, but it is very difficult to determine the desired parameters manually. In addition, these parameters must be selected specifically for each image. In this paper, a method is presented for automatic determination of these parameters using an evolutionary algorithm. Evaluation of this method demonstrates its high performance on natural images.
کلیدواژه‌های انگلیسی مقاله Object segmentation, Local threshold, Histogram, invasive weed optimization, Texture analysis

نویسندگان مقاله S. Bayatpour |
Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.

Seyed M. H. Hasheminejad |
Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.


نشانی اینترنتی http://jad.shahroodut.ac.ir/article_2135_6b81d4b9dec6d2a381de3e331d667ba5.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات