این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۹، شماره ۴، صفحات ۴۷۵-۴۸۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Multi-Sentence Hierarchical Generative Adversarial Network GAN (MSH-GAN) for Automatic Text-to-Image Generation
چکیده انگلیسی مقاله This research is related to the development of technology in the field of automatic text to image generation. In this regard, two main goals are pursued; first, the generated image should look as real as possible; and second, the generated image should be a meaningful description of the input text. our proposed method is a Multi Sentences Hierarchical GAN (MSH-GAN) for text to image generation. In this research project, we have considered two main strategies: 1) produce a higher quality image in the first step, and 2) use two additional descriptions to improve the original image in the next steps. Our goal is to focus on using more information to generate images with higher resolution by using more than one sentence input text. We have proposed different models based on GANs and Memory Networks. We have also used more challenging dataset called ids-ade. This is the first time; this dataset has been used in this area. We have evaluated our models based on IS, FID and, R-precision evaluation metrics. Experimental results demonstrate that our best model performs favorably against the basic state-of-the-art approaches like StackGAN and AttGAN.
کلیدواژه‌های انگلیسی مقاله Generative Adversarial, Networks (GANs), deep learning, Natural Language Processing (NLP)

نویسندگان مقاله E. Pejhan |
Computer Engineering Department, Yazd University, Yazd, Iran

M. Ghasemzadeh |
Computer Engineering Departmen, Yazd University, Yazd, Iran.


نشانی اینترنتی http://jad.shahroodut.ac.ir/article_2143_5a0771ae3b4266f6af1f04e171a2f1f4.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات