این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۹، شماره ۴، صفحات ۵۷۱-۵۸۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Robust Vein Recognition against Rotation using Kernel Sparse Representation
چکیده انگلیسی مقاله
Sparse representation due to advantages such as noise-resistant and, having a strong mathematical theory, has been noticed as a powerful tool in recent decades. In this paper, using the sparse representation, kernel trick, and a different technique of the Region of Interest (ROI) extraction which we had presented in our previous work, a new and robust method against rotation is introduced for dorsal hand vein recognition. In this method, to select the ROI, by changing the length and angle of the sides, undesirable effects of hand rotation during taking images have largely been neutralized. So, depending on the amount of hand rotation, ROI in each image will be different in size and shape. On the other hand, because of the same direction distribution on the dorsal hand vein patterns, we have used the kernel trick on sparse representation to classification. As a result, most samples with different classes but the same direction distribution will be classified properly. Using these two techniques, lead to introduce an effective method against hand rotation, for dorsal hand vein recognition. Increases of 2.26% in the recognition rate is observed for the proposed method when compared to the three conventional SRC-based algorithms and three classification methods based sparse coding that used dictionary learning.
کلیدواژههای انگلیسی مقاله
sparse representation, Kernel trick, dorsal hand vein pattern, region of interest
نویسندگان مقاله
A. Nozaripour |
Department of Electrical/Computer Engineering Semnan University, Semnan, Iran.
H. Soltanizadeh |
Department of Electrical/Computer Engineering Semnan University, Semnan, Iran.
نشانی اینترنتی
http://jad.shahroodut.ac.ir/article_2184_733a0fb70bf3e6a7fa7b60bf8f368cbd.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات