این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Journal of Mining and Environment
، جلد ۱۲، شماره ۳، صفحات ۸۶۳-۸۷۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Investigating Correlation of Physico-Mechanical Parameters and P-Wave Velocity of Rocks: a Comparative Intelligent Study
چکیده انگلیسی مقاله
The mechanical characteristics of rocks and rock masses are considered as the determining factors in making plans in the mining and civil engineering projects. Two factors that determine how rocks responds in varying stress conditions are P-wave velocity (PWV) and its isotropic properties. Therefore, achieving a high-accurate method to estimate PWV is a very important task. This work investigates the use of different intelligent models such as multivariate adaptive regression splines (MARS), classification and regression tree (CART), group method of data handling (GMDH), and gene expression programming (GEP) for the prediction of PWV. The proposed models are then evaluated using several error statistics, i.e. squared correlation coefficient (R2) and root mean squared error (RMSE). The values of R2 obtained from the CART, MARS, GMDH, and GEP models are 0.983, 0.999, 0.995, and 0.998, respectively. Furthermore, the CART, MARS, GMDH, and GEP models predict PWV with the RMSE values of 0.037, 0.007, 0.023, and 0.020, respectively. According to the aforementioned amounts, the models presented in this work predict PWV with a good performance. Nevertheless, the results obtained reveal that the MARS model yields a better prediction in comparison to the GEP, GMDH, and CART models. Accordingly, MARS can be offered as an accurate model for predicting the aims in other rock mechanics and geotechnical fields.
کلیدواژههای انگلیسی مقاله
P-wave velocity, Artificial intelligence, Prediction models, Multivariate adaptive regression splines
نویسندگان مقاله
H. Fattahi |
Faculty of Earth Sciences Engineering, Arak University of Technology, Iran
M. Hasanipanah |
Department of Mining Engineering, University of Kashan, Iran
N. Zandy Ilghani |
Faculty of Earth Sciences Engineering, Arak University of Technology, Iran
نشانی اینترنتی
http://jme.shahroodut.ac.ir/article_2165_25b5682b7ffe788795864e9db61e3d8a.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات