این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
Journal of Mining and Environment
، جلد ۱۲، شماره ۲، صفحات ۳۲۷-۳۳۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Probabilistic Approach for Prediction of Drilling Rate Index using Ensemble Learning Technique
چکیده انگلیسی مقاله
Drillability is one of the significant issues in rock engineering. The drilling rate index (DRI) is an important tool in analyzing the drillability of rocks. Several efforts have been made by the researchers to correlate and evaluate DRI of rocks. The ensemble learning methods including the decision tree (DT), adaptive boosting (AdaBoost), and random forest (RF) are employed in this research work in order to predict DRI of rocks. A drillability database with four parameters is compiled in this work. A relationship between the input parameters and DRI is established using the simple regression analysis. In order to train the model, different mechanical properties of rocks incorporating the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), brittleness test (S20), and sievers’ J-miniature drill value (Sj) are taken as the input variables. The original DRI database is randomly divided into the training and test sets with an 80/20 sampling method. Various algorithms are developed, and consequently, several approaches are followed in order to predict DRI of the rock samples. The model performance has revealed that RF predicts DRI with a high accuracy rate. Besides, the Monte Carlo simulations exhibit that this approach is more reliable in predicting the probability distribution of DRI. Therefore, the proposed model can be practiced for the stability risk management and the investigative design of DRI.
کلیدواژههای انگلیسی مقاله
Drilling rate index, Ensemble learning, Prediction, Drillability, Probability
نویسندگان مقاله
M. Kamran |
Department of Mining Engineering, Bandung Institute of Technology, Kota Bandung, Indonesia
نشانی اینترنتی
http://jme.shahroodut.ac.ir/article_2060_e55fba47a59b748091581103d673e2dc.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات