این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Mining and Environment، جلد ۱۲، شماره ۱، صفحات ۲۷۱-۲۸۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Facies Quality Zoning in Shale Gas by Deep Learning Method
چکیده انگلیسی مقاله One of the most essential factors involved in unconventional gas reserves for drilling and production is a suitable quality facies determination. The direct core and geochemical analyses are the most common methods used for studying this quality. Due to the lack of this data and the high cost, the researchers have recently resorted to the indirect methods that use the common data of the reservoir (including petro-physical logs and seismic data). One of the major problems in using these methods is that the complexities of these reproducible repositories cannot be accurately modeled. In this work, the quality of facies in shale gas is zoned using the deep learning technique. The applied method is long short-term memory (LSTM) neural network. In this scheme, the features required for zoning are automatically extracted and used to model the reservoir complexities properly. The results of this work show that zoning is done with an appropriate accuracy (86%) using the LSTM neural network, while it is 78% for a conventional intelligent MLP network. This specifies the superior accuracy of the deep learning method.
کلیدواژه‌های انگلیسی مقاله Facies Quality Zoning, deep learning, Petrophysical logs, Seismic, Canning Basin

نویسندگان مقاله Y. Asgari Nezhad |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

A. Moradzadeh |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran


نشانی اینترنتی http://jme.shahroodut.ac.ir/article_1972_8b470378214b7a11c058f85c9d1c9e62.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات