این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
Journal of Mining and Environment
، جلد ۱۳، شماره ۱، صفحات ۶۹-۸۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Application of Machine Learning Techniques to Predict Haul Truck Fuel Consumption in Open-Pit Mines
چکیده انگلیسی مقاله
The haul trucks consume a significant energy source in open-pit mines, where diesel fuel is widely used as the main energy source. Improving the haul truck fuel consumption can considerably decrease the operating cost of mining, and more importantly, reduce the pollutants and greenhouse gas emissions. This work aims to model and evaluate the diesel fuel consumption of the mining haul trucks. The machine learning techniques including multiple linear regression, random forest, artificial neural network, support vector machine, and kernel nearest neighbor are implemented and investigated in order to predict the haul truck fuel consumption based on the independent variables such as the payload, total resistance, and actual speed. The prediction models are built on the actual dataset collected from an Iron ore open-pit mine located in the Yazd province, Iran. In order to evaluate the goodness of the predicted models, the coefficient of determination, mean square error, and mean absolute error are investigated. The results obtained demonstrate that the artificial neural network has the highest accuracy compared to the other models (coefficient of determination = 0.903, mean square error = 489.173, and mean absolute error = 13.440). In contrast, the multiple linear regression exhibits the worst result in all statistical metrics. Finally, a sensitivity analysis is used to evaluate the significance of the independent variables.
کلیدواژههای انگلیسی مقاله
Fuel consumption, Haul truck, Machine learning, Prediction, Open-Pit Mine
نویسندگان مقاله
S. Alamdari |
Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
M.H. Basiri |
Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
A. Mousavi |
Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
A. Soofastaei |
Vale Artificial Intelligence Center, Brisbane, QLD 4000, Australia
نشانی اینترنتی
http://jme.shahroodut.ac.ir/article_2381_fffca974d2fabf3f253054308e360d9a.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات