این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 6 دی 1404
International Journal of Information and Communication Technology Research (IJICT
، جلد ۱۴، شماره ۱، صفحات ۵۷-۶۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
cMaxDriver: A Centrality Maximization Intersection Approach for Prediction of Cancer-Causing Genes in the Transcriptional Regulatory Network
چکیده انگلیسی مقاله
Cancer-causing genes are genes in which mutations cause the onset and spread of cancer. These genes are called driver genes or cancer-causal genes. Several computational methods have been proposed so far to find them. Most of these methods are based on the genome sequencing of cancer tissues. They look for key mutations in genome data to predict cancer genes. This study proposes a new approach called centrality maximization intersection, cMaxDriver, as a network-based tool for predicting cancer-causing genes in the human transcriptional regulatory network. In this approach, we used degree, closeness, and betweenness centralities, without using genome data. We first constructed three cancer transcriptional regulatory networks using gene expression data and regulatory interactions as benchmarks. We then calculated the three mentioned centralities for the genes in the network and considered the nodes with the highest values in each of the centralities as important genes in the network. Finally, we identified the nodes with the highest value between at least two centralities as cancer causal genes. We compared the results with eighteen previous computational and network-based methods. The results show that the proposed approach has improved the efficiency and F-measure, significantly. In addition, the cMaxDriver approach has identified unique cancer driver genes, which other methods cannot identify.
کلیدواژههای انگلیسی مقاله
Cancer-causing genes,Transcriptional regulatory network, Maximization, Centrality, Intersection
نویسندگان مقاله
| Sajedeh Lashgari
Department of Data Science, School of Mathematical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| Babak Teimourpour
Department of Information Technology Engineering, School of Systems and Industrial Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| Mostafa Akhavan-Safar
Department of Computer and Information Technology Engineering, Payame Noor University (PNU), Tehran, Iran
نشانی اینترنتی
http://ijict.itrc.ac.ir/browse.php?a_code=A-10-4378-1&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
فناوری اطلاعات
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات