این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 19 آذر 1404
International Journal of Radiation Research
، جلد ۲۰، شماره ۴، صفحات ۷۳۷-۷۴۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
The significance of peritumoral 5mm regions features for radiomics model in distinguishing the lung adenocarcinomas and granulomas
چکیده انگلیسی مقاله
Background: To investigate whether features of 5-mm peritumoral regions could significantly improve the predictive efficacy of a radiomics model based on solid pulmonary tumors at distinguishing lung adenocarcinoma(LAC) from granuloma(GR). Materials and Methods: We retrospectively evaluated 167 lung tumors pathologically proven to be LAC (96) or GR (71) and divided them into training group (116) and testing (51) group. We delineated each tumor with three different measures using the tumor and its 5-mm peritumoral region. Then, we extracted 465 features from each volume of interest(VOI) and chose the optimal features to build the diagnostic models. We built four different models using different methods. Finally, we compared the performance of the four models in the test set. Results: The area under the curve(AUC) of each model in the test group was 0.765 (95% confidence interval(CI): 0.620–0.909), 0.797 (95%CI: 0.670–0.924), and 0.784 (95%CI: 0.647–0.920), respectively. Results of the DeLong test showed that the differences between model 2, model 3, and model 1 were not significant. Results of net reclassification improvement(NRI) showed that model 2 and model 3 had better differential diagnostic efficacy than model 1, with accuracies(ACCs) of 0.784, 0.745, and 0.686, respectively, but the differences were not significant (P>0.05). Moreover, the nomogram had good diagnostic and predictive abilities, with an AUC of 0.848 (95%CI: 0.736–0.961) and an ACC of 0.804. Conclusions: Features of 5-mm peritumoral regions improved the predictive ability of the radiomics model based on the solid pulmonary tumor, but the difference was not significant.
کلیدواژههای انگلیسی مقاله
lung adenocarcinomas, granulomas, radiomics, nomogram, machine learning.
نویسندگان مقاله
| Y. Geng
Department of Radiology, The fourth Affiliated Hospital of China Medical University, Shengyang, China
| L. Sun
Department of Radiology, The fourth Affiliated Hospital of China Medical University, Shengyang, China
| M. Sun
Department of Radiology, The fourth Affiliated Hospital of China Medical University, Shengyang, China
| Z. Zhang
Department of Radiology, The fourth Affiliated Hospital of China Medical University, Shengyang, China
| J. Liu
Department of Radiology, The fourth Affiliated Hospital of China Medical University, Shengyang, China
نشانی اینترنتی
http://ijrr.com/browse.php?a_code=A-10-1-972&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
Radiation Biology
نوع مقاله منتشر شده
تحقیق بدیع
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات