این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Public Health، جلد ۵۲، شماره ۱، صفحات ۱۷۵-۱۸۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Rule Based Intelligent Software to Predict Length of Stay and the Mortality Rate in Trauma Patients in the Intensive Care Unit
چکیده انگلیسی مقاله Background: Intensive Care Unit (ICU) has the highest mortality rate in the world. ICU has special equipment that leads to the hospital's most costly parts. The length of stay in the ICU is a special issue, and reducing this time is a practical approach. We aimed to use artificial intelligence to help early and timely diagnosis of the disease to help with health. Methods: We designed a rule-based intelligent system to predict the length of stay and the mortality rate of trauma patients in ICU. A neuro-Fuzzy and eight machine learning models were used to predict the mortality rate in trauma patients in ICU. The performances of these techniques were evaluated with accuracy, sensitivity, specificity, and area under the ROC curve. Decision-Table was used to predict the length of stay in trauma patients in ICU. For comparison, eight machine learning models were used. The method is compared based on Mean absolute error and relative absolute error (%). Results: Neuro-Fuzzy expert system and Decision-Table showed better results than other techniques. Accuracy, sensitivity, specificity, and ROC Area of Nero-Fuzzy are 83.6735, 0.9744, 0.3000, 0.8379, and 1, respectively. The mean absolute error and Relative absolute error (%) of the Decision-Table model are 4.5426 and 65.4391, respectively. Conclusion: Neuro-Fuzzy expert system with the highest level of accuracy and a Decision-Table with the lowest Mean absolute error, which are rule-based models, are the best models. Therefore, these models are recommended as a valuable tool for prediction parameters of ICU as well as medical decision-making.  
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله | Mitra Montazeri
Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran


| Mehdi Ahmadinejad
Department of Anesthesiology, Shahid Bahonar Hospital, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran


| Mahdieh Montazeri
1. Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran 2. Department of Health Information Sciences, Faculty of Management and Medical Information Sciences, Kerman University of Medical Sciences, Kerman, Iran


| Kambiz Bahaadinbeigy
Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran


| Mohadeseh Montazeri
Department of Computer, Technical and Vocational University, Kerman, Iran


| Leila Ahmadian
Kerman University of Medical Science



نشانی اینترنتی https://ijph.tums.ac.ir/index.php/ijph/article/view/22473
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات