این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Environmental Resources Research، جلد ۹، شماره ۲، صفحات ۲۱۳-۲۲۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Evaluating Performance of Hybrid Neural Network Models in Daily River Flow Estimation
چکیده انگلیسی مقاله River flow forecasting is of immense importance for reliable planning, designing, and management of water resources projects. This study investigated the performance of wavelet neural network, support vector machine, artificial neural network, and Multiple Models Driven by Artificial Neural Networks (MMANN) in predicting flow time series of the Kashkan River in Lorestan, Iran. Daily flow time series was created from the records of Kashkan hydrometric and rain gauge stations for a 10-year period from 2006 to 2016. To determine the best input-output mapping, estimations were repeated with different combinations of inputs derived from previous daily river flow data. Performance of the models was evaluated in terms of correlation coefficient, root mean square error, and mean absolute error. Performance comparisons showed that the MMANN model with a correlation coefficient of 0.960, root mean square error of 0.021, and mean absolute error of 0.001 generates the best daily flow estimates for the studied river.
کلیدواژه‌های انگلیسی مقاله Flow discharge, Support vector machine, wavelet neural network, Forecasting

نویسندگان مقاله Hojatolah Younesi |
Assistant Professor Department of Water Engineering

Ahmad Godarzi |
phd student


نشانی اینترنتی https://ijerr.gau.ac.ir/article_5798_021364735850fb1b513ff655faccd7b8.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات