این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۴، شماره ۱، صفحات ۲۷۵-۲۸۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Solving NP hard problems using a new genetic algorithm
چکیده انگلیسی مقاله
Over the past few decades, a lot of meta-heuristics have been developed to solve N-P hard problems. Genetic algorithm, ant colony optimization, simulated annealing, electromagnetism algorithm and tabu search are some examples of meta-heuristics algorithms. These kinds of algorithms have two main classes: population-based and Trajectory. Many of these algorithms are inspired by various phenomena of nature. In this research, the author introduces a new population-based method inspired by the lifestyle of lions and the genetic algorithm’s structure called the new genetic algorithm (NGA). The social behaviour of lions and genetic operators like mutation and cross-over is the main structure of NGA. Finally, the NGA is compared with the hybrid genetic and hybrid ant colony optimization as the best existing algorithms in the literature. The experimental results have revealed that the NGA is competitive in terms of solution quality to solve the vehicle routing and scheduling problems as two main categories of N-P hard problems.
کلیدواژههای انگلیسی مقاله
New genetic algorithm, N-P Hard problem, Scheduling, Vehicle routing problem, Genetic operator, Ant colony optimization
نویسندگان مقاله
Mohammad Ali Ebrahimi |
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran
Hassan Dehghan Dehnavi |
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran
Mohammad Mirabi |
Department of Industrial Engineering, Meybod University, Meybod, Iran
Mohammad Taghi Honari |
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran
Abolfazl Sadeghian |
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_6367_4eaf81dfc449e58eeb84261a89e9db35.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات