این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۴، شماره ۱، صفحات ۲۷۵-۲۸۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Solving NP hard problems using a new genetic algorithm
چکیده انگلیسی مقاله Over the past few decades, a lot of meta-heuristics have been developed to solve N-P hard problems. Genetic algorithm, ant colony optimization, simulated annealing, electromagnetism algorithm and tabu search are some examples of meta-heuristics algorithms. These kinds of algorithms have two main classes: population-based and Trajectory. Many of these algorithms are inspired by various phenomena of nature. In this research, the author introduces a new population-based method inspired by the lifestyle of lions and the genetic algorithm’s structure called the new genetic algorithm (NGA). The social behaviour of lions and genetic operators like mutation and cross-over is the main structure of NGA. Finally, the NGA is compared with the hybrid genetic and hybrid ant colony optimization as the best existing algorithms in the literature. The experimental results have revealed that the NGA is competitive in terms of solution quality to solve the vehicle routing and scheduling problems as two main categories of N-P hard problems.
کلیدواژه‌های انگلیسی مقاله New genetic algorithm, N-P Hard problem, Scheduling, Vehicle routing problem, Genetic operator, Ant colony optimization

نویسندگان مقاله Mohammad Ali Ebrahimi |
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran

Hassan Dehghan Dehnavi |
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran

Mohammad Mirabi |
Department of Industrial Engineering, Meybod University, Meybod, Iran

Mohammad Taghi Honari |
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran

Abolfazl Sadeghian |
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_6367_4eaf81dfc449e58eeb84261a89e9db35.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات