این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۴، شماره ۱، صفحات ۳۵۵-۳۷۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Novel nature-inspired meta-heuristic optimization algorithm based on hybrid dolphin and sparrow optimization
چکیده انگلیسی مقاله
The increasing difficulty of actual-world optimization problems has prompted computer researchers to produce process improvement techniques regularly. Metaheuristic and evolutionary computation are popular in nature-inspired optimization methods. This paper introduces hybrid dolphin and sparrow optimization (DSO), which is a modification of a new metaphorical algorithm based on the natural behavior of sparrows and dolphins. Various adaptive and arbitrary variables are combined within this algorithm to indicate the exploitation and investigation of the exploration area in various discoveries of optimization. Multiple test strategies are used to calculate DSO performance. Initially, a collection of experiment events, including unimodal, multimodal, and composite functions, is applied to examine the exploitation, exploration, local optima avoidance, and convergence of DSO. Furthermore, unique metrics, such as the most suitable solution through optimization and search history, are applied to qualitatively and quantitatively examine and verify the achievement of DSO on turned 2D inspection functions. The effects of analysis functions and achievement metrics show that the proposed method can search various regions of a search space, provide local optima avoidance, converge toward the global optimum, and utilize encouraging areas of a search range while optimization proceeds efficiently. The DSO algorithm achieves a regular frame for an airfoil with a low drag, which explains that the methods are efficient in improving physical difficulties, including restrained plus unknown search spaces.
کلیدواژههای انگلیسی مقاله
Meta-heuristic, Swarm intelligent, Global optimum, Dolphin, Sparrow optimization
نویسندگان مقاله
Shahab Wahhab Kareem |
Department of Information Systems Engineering, Erbil Polytechnic University, Erbil, Iraq
Amin Salih Mohammed |
Department of Software and Informatics, Salahaddin University-Erbil, Iraq
Farah Sami Khoshabaa |
Department of Information Systems Engineering, Erbil Polytechnic University, Erbil, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_6726_f4973447baa6a33255b5cf75c7cf4fcd.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات