این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۴، شماره ۱، صفحات ۱۴۸۱-۱۴۹۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An approximation approach towards a class of integro-differential equation with pure delay
چکیده انگلیسی مقاله In this article, we study a new numerical approach to solve some particular class of delay integro-differential equations. The considered problem is a singularly perturbed Volterra integro-differential equation with a pure delay term. To solve such equations numerically we adopt the standard Adomian decomposition method followed by a first-order truncated Taylor approximation. The most appealing advantage of the present method is that it provides an adequate result for a wide scale of values to the perturbation parameter. The efficiency of the proposed method is illustrated with an example. Moreover, a vivid realization of the treatment is described by the theoretical study related to error analysis. Under some relevant assumptions boundedness of solution, and stability analysis are also established in the agreement of the current method. To strengthen our findings, a comparative study between the proposed technique and the well-renowned spline method is presented in the manuscript. Moreover, outcomes suggest the prior efficiency of the method which is also supported by the theoretical results.
کلیدواژه‌های انگلیسی مقاله Volterra Integro-Differential Equation, Adomian Decomposition, Hyer-Ulam-Rassias stability

نویسندگان مقاله Nimai Sarkar |
Department of Mathematics, Madanapalle Institute of Technology & Science, India

Mausumi Sen |
Department of Mathematics, National Institute of Technology Silchar, India

Dipankar Saha |
Department of Mathematics, DRK Institute of Science and Technology, Hyderabad, India

Ravi Agarwal |
Department of Mathematics, Texas A & M University-Kingsville, Texas, 78363-8202, USA


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_6972_a9cea43a0426a4e2ae589bc4ea70b7d5.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات