این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۴، شماره ۱، صفحات ۱۹۳۹-۱۹۶۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Deep learning-based COVID-19 detection: State-of-the-art in research
چکیده انگلیسی مقاله
In the last two years, the coronavirus (COVID-19) pandemic put healthcare systems around the world under tremendous pressure. Imaging techniques (like Chest X-rays) play an essential role in diagnosing many diseases (such as COVID-19). There have been intelligent systems (Machine Learning (ML) and Deep Learning (DL)) able to identify COVID-19 from similar normal diseases. In this paper, we start by overviewing the status of COVID-19 from a historical standpoint and diagnosis updates. Moving on, provide an overview of the convolutional neural networks. Then, we elaborate Transfer learning method and its main approaches. Next, we provide a critical literature review on implementing Deep learning techniques: 1) Novel deep learning architecture; 2) Direct use of deep learning; 3) Transfer learning fine-tuning technique, and 4) Transfer learning feature extraction technique. For each of these, we evaluate and compare very recent studies published in highly ranked journals. The experiments show that all techniques achieve closer accuracy, ranging from (98-100 %). Along with all, the direct use of the deep learning technique records the highest accuracy and is less time-consuming and resource spending. Therefore, establishing such a technique is useful to predict the outbreak early, which in turn can aid in controlling the pandemic effectively.
کلیدواژههای انگلیسی مقاله
COVID-19, Deep learning, machine learning, X-rays
نویسندگان مقاله
Mohammed Saleh Ahmed |
Computer Science Department, College of Computer Science and Information Technology, Kirkuk University, Kirkuk, Iraq
Ahmed M. Fakhrudeen |
Software Department, College of Computer Science and Information Technology, Kirkuk University, Kirkuk, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_7119_871cb24534d51f5272de652b42ab48b5.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات