این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۴، شماره ۱، صفحات ۲۸۷۱-۲۸۸۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A monitoring system for railways based on WSN
چکیده انگلیسی مقاله
The process of controlling railway systems is one of the important and effective topics in the process of maintaining the flow of trains’ movement and organizing the travel process, as well as providing early readings of any defect or problem that occurs in the railway network to avoid, treat accidents and ensure a safe environment for the movement of train cars across the geographical area. Therefore, a continuous follow-up of the railway condition must be provided to ensure that services continue to be provided. Intelligent railway maintenance improves safety and efficiency. This work presents the design and implementation of a real-time monitoring system for railways based on WSN. This study proposes a system consisting of a base station server and a Rail controller. The Base Station (BS) can automatically monitor and control most railway paths. For that, a classification-based deep learning model for object detection near the railway and making appropriate decisions were proposed. To improve classification-model performance, the yolov3 algorithm for object detection was proposed. On the Rail controller side, the Raspberry Pi 4 was utilized as a low-cost processing unit that can be used as a control unit to control some processes, such as streaming video from a camera, gathering information from railway sensors, and sending data to the central station server (PC) by using WiFi protocol. The model can detect and control railway issues in real time by receiving streaming data and directly detecting, classifying issues, and making the best decisions. By alarming or controlling the desired train and stopping it.
کلیدواژههای انگلیسی مقاله
Railway Inspection, Real-Time Monitoring System, Deep learning, object detection, YOLOV3, Raspberry pi 4
نویسندگان مقاله
Zena Abd Alrahman |
The Informatics Institute for Graduate Studies, Baghdad, Iraq
Ali Adham |
The Informatics Institute for Graduate Studies, Baghdad, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_7353_85f0f56353377254ad359dbfe4576bc1.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات