این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۳، شماره ۲، صفحات ۱۸۷۹-۱۸۹۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Brain tumor segmentation and classification: A one-decade review
چکیده انگلیسی مقاله
Image segmentation is a common technique in digital image processing and analysis that partitions an image into several regions or zones, frequently based on the pixels' attributes. Brain tumor segmentation is a crucial task in medical image processing. Early identification of brain tumors enhances treatment options and increases the patient's chance of survival. Brain segmentation from a significant number of MR images obtained in medical treatment is a challenging and time-consuming assignment for cancer diagnosis and other brain diseases. That is why it is crucial to establish an efficient automatic image segmentation system for the diagnosis of brain tumors and other prevalent nervous diseases. The goal of this research is to undertake a systematic review of MRI-based brain tumor segmentation approaches. Deep learning techniques have proven useful for automatic segmentation in recent years and gained prominence, as these methods produce superior results and are thus better suited to this task than other methods. Deep learning algorithms may also be used to process enormous volumes of MRI-based image data quickly and objectively. Many review papers on traditional MRI-based brain tumor image segmentation algorithms are available.
کلیدواژههای انگلیسی مقاله
brain tumor, denoising, Magnetic Resonance Imaging (MRI), Convolutional Neural Networks (CNN), Deep Learning (DL), Segmentation, Classification
نویسندگان مقاله
Sarmad Fouad Yaseen |
Department of Computer Engineering, University of Technology, Baghdad, Iraq
Ahmed S. Al-Araji |
Department of Computer Engineering, University of Technology, Baghdad, Iraq
Amjad J. Humaidi |
Department of Control and System Engineering, University of Technology, Baghdad, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_6595_8ef9942246cceb3e77e8229b7c5b66ad.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات