این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۳، شماره ۲، صفحات ۲۲۳۳-۲۲۴۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A machine learning approach for solving inverse Stefan problem
چکیده انگلیسی مقاله In this paper, we propose a numerical scheme by using Least Squares Support Vector Regression (LS-SVR) for the simulation of the inverse Stefan problem, which has ill-posedness issues. The purpose of this paper is to express the temperature distribution in a homogeneous environment with a phase change. In the proposed machine learning approach, we apply the unconditionally stable Crank-Nicolson method to decrease the computational cost and reduce one of the dimensions. Therefore, we solve an ODE equation at each time step. The training points of the network are chosen as the Chebyshev roots, which have a normal distribution, and our constructed roots, which we describe more precisely later. In the proposed method, the regularization parameter of the SVM aims to overcome the instability issues, leading to convergent approximation. For the given method, both the primal and dual forms are investigated. The dual form of the problem is written in matrix form. Finally, some numerical examples are provided to illustrate the effectiveness and accuracy of the proposed method.
کلیدواژه‌های انگلیسی مقاله Least squares support vector regression, Orthogonal kernel, Inverse Stefan problem, Collocation method, Chebyshev polynomials

نویسندگان مقاله Kourosh Parand |
Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, G.C. Tehran, Iran

Ghazal Sadat Ghaemi Javid |
Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, G.C. Tehran, Iran

Mostafa Jani |
Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, G.C. Tehran, Iran


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_6252_4b4b3ba0c1e8f38abf4af38299d2af25.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات