این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۳، شماره ۲، صفحات ۲۳۱۱-۲۳۲۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Fully automated human finger vein binary pattern extraction-based double optimization stages of unsupervised learning approach
چکیده انگلیسی مقاله
Today, finger vein identification is gaining popularity as a potential biometric identification framework solution. Machine learning-based unsupervised supervised, and deep learning algorithms have had a significant influence on finger vein detection and recognition at the moment. Deep learning, on the other hand, necessitates a large number of training datasets that must be manually produced and labelled. In this research, we offer a completely automated unsupervised learning strategy for training dataset creation. Our method is intended to extract and build a decent binary mask training dataset completely automatically. In this technique, two optimization steps are devised and employed. The initial stage of optimization is to create a completely automated unsupervised image clustering based on finger vein image localization. In the second optimization, the retrieved finger vein lines are optimized. Lastly, the proposed system has a pattern extraction accuracy of 99.6%, which is much higher than other common unsupervised learning methods like k-means and Fuzzy C-Means (FCM).
کلیدواژههای انگلیسی مقاله
Clustering Algorithms, Unsupervised Learning, K-mean, FCM, Finger Vein Identification
نویسندگان مقاله
Ali Salah Hameed |
Department of Computer Science, College of Science, University of Diyala, Baquba, Iraq
Adil Al-Azzawi |
Department of Computer Science, College of Science, University of Diyala, Baquba, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_6625_c602c97dca787d004a2c712434396819.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات