این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۳، شماره Special Issue for selected papers of ICDACT-۲۰۲۱، صفحات ۵۳-۶۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Efficient binary grasshopper optimization based neural network algorithm for bitcoin value prediction
چکیده انگلیسی مقاله Digital currency plays a vital role in the process of trading as it helps the sellers and buyers to earn more profit. In today’s world, many categories of cryptocurrencies exist and each one of them employs its own security algorithms. Bitcoin price prediction is a complex problem that needs advanced algorithms to solve exactly. In this paper, swarm-based intelligence algorithms are applied in order to solve the bitcoin value prediction problem. In particular, Ant Colony Optimization and Binary Grasshopper Optimization algorithms are combined as a hybrid framework to select the most critical features in the dataset for bitcoin value prediction. The extracted features from the hybrid model are given as input to the convolutional neural network to predict the price of the bitcoins. As per the experimental results, the proposed hybrid algorithm produces better results when compared with the stand-alone version of grasshopper and neural network algorithms.
کلیدواژه‌های انگلیسی مقاله Bitcoin, Value Prediction, Optimization Algorithm, Binary Grasshopper Algorithm, CNN Algorithm

نویسندگان مقاله A. Saran Kumar |
Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India

S. Priyanka |
Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India

K. Dhanashree |
Department of CSE, Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India

V. Praveen |
Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India

R. Rekha |
Department of IT, PSG College of Technology, Coimbatore, Tamilnadu, India


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_6330_e6aef6de844ba43f8380bc4c7dd16704.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات