این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۳، شماره ۱، صفحات ۶۰۳-۶۱۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An innovative and robust technique for human identification and authentication based on a secure clinical signals transmission
چکیده انگلیسی مقاله EEG (Electroencephalogram) is brain waves measure. It is available test allowed to discover the brain functions over time. The brain troubles are evaluated by EEG. It is used to locate the activity in the brain during a seizure and to consider the patients who suffer from brain functionality problems. These troubles include tumors, coma, confusion and long-term difficulties (such as weakness associated with a stroke). The acquisition of EEG signals requires contact and liveliness and these signals are changes under stress that make so potentially unnecessary if it is acquired under menace. In this paper, an innovative and robust solution for this problem is introduced. To this end, the manner depends on models of various data compression models of information-theoretic plus the metrics symmetry related to Kolmogorov complexity. The proposed procedure compares two EEG segments and clusters the data into three groups: a corresponding record for each participant, a distinct person for each group, and self-participant. The technique was used to determine the database participant based on EEG signals. Using a distance measuring approach suggested in this scheme, a 1-NN classifier was constructed. Nearly every person in the underlying database could be accurately identified by the classifier with $96%$ accuracy
کلیدواژه‌های انگلیسی مقاله Electroencephalogram (EEG), Pearson Correlation (PrCo), Euclidean Distance (EucDis), Signal Encryption

نویسندگان مقاله Baqer A Hakim |
College of Dentistry, University of Al-Ameed, Karbala PO Box 198, Iraq

Ahmed Dheyaa Radhi |
College of Pharmacy, University of Al-Ameed, Karbala PO Box 198, Iraq

Fuqdan AL-Ibraheemi |
Department of Computer Engineering and Information Technology, Faculty of Engineering, Razi University, Kermanshah, Iran


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5542_009e0de8249d5709287191d056a22834.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات