این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۳، شماره ۱، صفحات ۱۶۸۳-۱۶۹۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A local density-based outlier detection method for high dimension data
چکیده انگلیسی مقاله
The researchers faced challenges in the outlier detection process, mainly when deals with the high dimensional dataset; to handle this problem, we use The principal component analysis. Outlier detection or anomaly detection, with local density-based methods, compares the density of observation with the surrounding local density neighbors. We apply the outlier score as a measure of comparison. In this research, we choose different density estimation functions and calculated different distances. Weighted kernel density estimation with adaptive bandwidth for multivariate kernel density estimation(Gaussian) considered the $KNN$ and RNN. $KNN$ is considered too for the Epanenchnikov kernel density estimation. Lastly, we estimate the LOF as a base method in detecting outliers. Extensive experiments on a synthetic dataset have shown that RKDOS and EPA are more efficient than LOF using the precision evaluation criterion.
کلیدواژههای انگلیسی مقاله
local density, K-nearest neighbor, R-nearest neighbor, outlier score, WKDE
نویسندگان مقاله
Shahad Adel Abdulghafoor |
University of Baghdad, College of Management and Economics, Department Of Statistics, Iraq
Lekaa Ali Mohamed |
University of Baghdad, College of Management and Economics, Department Of Statistics, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_5784_f851540ce83b89b0ba7ae6d2e356ef0a.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات