این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۳، شماره ۱، صفحات ۱۹۴۹-۱۹۵۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Palm leaf nutrient deficiency detection using convolutional neural network (CNN)
چکیده انگلیسی مقاله Palm oil, scientifically known as Elaeis guineensis, is a rapidly growing commercial sector in Southeast Asia with a diverse economic composition. Palm oil plantations are crucial in economic activities and growth, as they generate employment in managing the palm oil quality. However, the lack of nutrients can affect the growth and quality of the crops. The manual detection of palm leaf nutrient deficiency can be one of the challenges as the visual symptoms of the deficiency demonstrate a similar representation. Thus, in this study, the palm leaf nutrient deficiency detection using Convolutional Neural Network (CNN) is proposed. CNN or ConvNet is a branch of deep neural networks in Deep Learning that is commonly used in analysing images and has proven to produce better feature extraction from dataset. A total of 350 images of healthy leaf and six types of palm leaf nutrient deficiency are Nitrogen, Potassium, Magnesium, Boron, Zinc, and Manganese were tested. The application of CNN to a variety of testing datasets returned good detection accuracy at 94.29%. It can be deduced that the proposed implementation of CNN for palm leaf nutrient deficiency detection is found to be successful. Nonetheless, the number of datasets could be increased in the future to improve the detection performance.
کلیدواژه‌های انگلیسی مقاله Palm leaf, Nutrient deficiency, Detection, Convolutional Neural Network (CNN)

نویسندگان مقاله Shafaf Ibrahim |
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Melaka (Kampus Jasin), 77300 Merlimau, Melaka, Malaysia

Noraini Hasan |
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Melaka (Kampus Jasin), 77300 Merlimau, Melaka, Malaysia

Nurbaity Sabri |
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Melaka (Kampus Jasin), 77300 Merlimau, Melaka, Malaysia

Khyrina Airin Fariza Abu Samah |
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Melaka (Kampus Jasin), 77300 Merlimau, Melaka, Malaysia

Muhamad Rahimi Rusland |
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Melaka (Kampus Jasin), 77300 Merlimau, Melaka, Malaysia


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5836_e8ce53bcee87db1e6ec2541025ca09de.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات