این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۳، شماره ۱، صفحات ۲۳۳۳-۲۳۵۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Using some methods to estimate the parameters of the Multivariate Skew Normal (MSN) distribution function with missing data
چکیده انگلیسی مقاله The estimation of statistical parameters for multivariate data can lead to wasted information if the missing values are neglected, which in return will lead to inaccurate estimates, therefore the incomplete data must be estimated using one of the statistical estimation methods to obtain accurate results and thus obtaining good estimates for the parameters. Missing values is considered one of the most important problems that researchers encounter and the most common, and in the case of the multivariate skew normal distribution (MSN) the presence of this problem will lead to weak and misleading conclusions for the research, which calls for treating this problem and in return obtaining efficient and convincing results. The aim of this paper is to estimate the missing values for the multivariate skew normal distribution function using the K-nearest neighbors Imputation (KNN). After estimating the missing values, the parameters are estimated using Genetic Algorithm (GA), and the Bayesian Approach was also used to estimate the missing values and find the estimates for the parameters. Using simulation, the Mean Squared Error (MSE) was calculated to find out which method is the best for estimation by comparing the two methods using different sample sizes (400, 600, and 800). The (GA) that is based on the (KNN) algorithm to estimate the missing values proved to be better and more efficient than the Bayesian Approach in terms of the results.
کلیدواژه‌های انگلیسی مقاله Multivariate Skew Normal distribution (MSN), K-Nearest Neighbors Imputation (KNN), Genetic Algorithm (GA), Bayesian Approach, Mean Squared Error (MSE)

نویسندگان مقاله Qutaiba Nabeel Nayef Al-Qazaz |
University of Baghdad ,College of Administration & Economics, Statistics Department, Iraq

Lina Nidhal Shawkat |
University of Baghdad ,College of Administration & Economics, Statistics Department, Iraq


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5932_416e35747ad77d2869187f1dba094c7b.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات