این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۳، شماره ۱، صفحات ۲۴۱۱-۲۴۲۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Recommendation engines-neural embedding to graph-based: Techniques and evaluations
چکیده انگلیسی مقاله The goal of any profit organization is to bolster its revenue by providing useful suggestions to its customer base. In order to achieve this, vast research is being undertaken by companies such as Netflix and Amazon on their Recommendation Systems and providing users with choices, they are most likely to click on. The purpose of this paper is to provide a holistic view of types of Recommendation Engines and how they are implemented, scaled and can provide a basis for revenue generation. The focus would be to implement a Recommendation Engine on PySpark using the ALS (Alternate Least Square) method. Besides, Neo-4j and Cypher query language for implementing recommendations on a graph database and analyzing how heterogeneous information can be levied to tackle the infamous cold start problem in recommender engines would be explored. The dataset used for analysis is the Group-lens 100K Movie-lens dataset and the algorithm is implemented to best fit the dataset. Further, an in-depth comparison of several techniques has been carried out on the basis of different metrics, hyper-parameter selection and the number of epochs used. The claims have been justified by evaluating the performance of the model depending on the different use cases, thus aiding in predictive analytics of the movie, as per the interest of the customer using visualization tools.
کلیدواژه‌های انگلیسی مقاله collaborative filtering, content-based filtering, popularity-based filtering, recommender system, Neural Networks

نویسندگان مقاله Ali Akbar |
Department of Computer science and Engineering, Jamia Hamdard, New Delhi, India

Parul Agarwal |
Department of Computer science and Engineering, Jamia Hamdard, New Delhi, India

Ahmed J. Obaid |
Faculty of Computer Science and Mathematics, University of Kufa, Iraq


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5941_6edb8a7eae002d050affa3cb76cbba7e.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات