این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۳، شماره ۱، صفحات ۲۴۲۵-۲۴۵۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Bayesian inference of fractional brownian motion of multivariate stochastic differential equations
چکیده انگلیسی مقاله There have been much interest in analysis of stochastic differential equation with long memory, represented by fractional diffusion process, this property have been proved itself in financial mathematic as intrinsic character of financial time series, so finding an appropriate method for estimate and analyze stochastic differential equations with long memory is a very important contemporary topic, in this paper we suggest a method for a system of stochastic differential equations with long memory, also we use the Bayesian methodology to incorporate the advanced knowledge , in addition we apply renormalized integral known in literature as Wick-It^{o}-Skorohod to solve problem of arbitrage in stochastic models (which yield inefficient mathematical stochastic models for financial market), some of conventional methods like quasi maximum likelihood , Separable Integral-Matching for Ordinary Differential Equations, and multivariate Brownian method are used to be compared with the suggested method. The suggested method has been proved to be very accurate. The estimated model used to calculate the portfolio of assets quantities allocation.
کلیدواژه‌های انگلیسی مقاله Fractional Brownian motion, Stochastic Differential Equations, Maximum likelihood, Prior distribution, Metropolis Hasting method, Hurst index, Langevin method

نویسندگان مقاله Qutaiba N. Nauef Al-Qazaz |
Department of Statistics, University of Baghdad, Iraq

Ahmed H. Ali |
Department of Statistics, University of Baghdad, Iraq


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5944_a74f85b8eeafe647e0b7618f5ae62012.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات