این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۲، شماره ۲، صفحات ۱۴۵-۱۶۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Predicting with the quantify intensities of transcription factor-target genes binding using random forest technique
چکیده انگلیسی مقاله
With the rapid development of technology, this development led to the emergence of microarray technology. It has the effect of studying the levels of gene expression in a way that makes it easier for researchers to observe the expression levels of millions of genes at the same time in a single experiment. Development also helped in the emergence of powerful tools to identify interactions between target genes and regulatory factors. The main aim of this study is to build models to predicate the relationship (Interaction) between Transcription Factors (TFs) proteins and target genes by selecting the subset of important genes (Relevant genes) from original dataset. The proposed methodology comprises into three major stages: the genes selection, merge datasets and the prediction stage. The process of reducing the computational space of gene data has been accomplished by using proposed mutual information method for genes selection based on the data of gene expression. In the prediction, the proposed prediction regression techniques are utilized to predict with binding rate between single TF-target gene. It has been compared the efficiency of two different proposed regression techniques including: Linear Regression and Random Forest Regression. Two available data sets have been utilized to achieve the objectives of this study: Gene’s expression data of Yeast Cell Cycle dataset and Transcription Factors dataset. The evaluation of predictions performance has been performed depending on two performance prediction measures (Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) with (10) Folds-Cross Validation.
کلیدواژههای انگلیسی مقاله
Microarray Technology, Gene Expression, Genes Selection, Prediction Techniques, Transcription Factors Proteins
نویسندگان مقاله
Ameer K. AL-Mashanji |
University of Babylon, Hilla, Iraq
Sura Z. AL-Rashid |
University of Babylon, Hilla, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_5026_e3d788947cfc90a278456e366d83d9e2.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات