این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۲، شماره ۲، صفحات ۲۲۶۳-۲۲۶۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Suggested methods for prediction using semiparametric regression function
چکیده انگلیسی مقاله Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper, we introduce a semi-parametric method for prediction by making a combination of NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in designing the model; the data was collected from a nursing home hospital for period 11/7/2021- 23/7/2021, the sample size is 100 covid positive patients with 12 females & 38 males out of 50, while 26 female & 24 male are non-COVID out of 50. The input variables of the NN model are identified as the ferritin and a gender variable. The higher results precision is attained by the multilayer perceptron (MLP) networks when we applied the explanatory variables as the inputs with one hidden layer, which covers 3 neurons, as the planned many hidden layers are with one output of the fitting NN model which is used in stages of training and validation beside the actual data. We used a portion of the actual data to verify the behavior of the developed models, we find out that only one observation is a false predictive value. This means that the estimation model has significant parameters to forecast the type of Covid cases (Covid or no Covid).
کلیدواژه‌های انگلیسی مقاله Semi-parametric method, Neural Network models (NN), regression, Ferritin level, Covid 19, multilayer perceptron (MLP)

نویسندگان مقاله Aseel Sameer Mohamed |
Family and Community Medicine Department, Al Kindy Medical College, University of Baghdad, Iraq


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5373_55921c1087ba54db17730104dfd587fb.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات