این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۲، شماره ۲، صفحات ۲۳۰۳-۲۳۳۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Energy Aware Multi Objective Algorithm for Task Scheduling on DVFS-Enabled Cloud Datacenters using Fuzzy NSGA-II
چکیده انگلیسی مقاله
Nowadays, energy consumption is curtailed in an effort to further protect the environment as well as to avoid service level agreement (SLA) breach, as critical issues in task scheduling on heterogeneous computing centers. Any reliable task scheduling algorithm should minimize energy consumption, makespan, and cost for cloud users and maximize resource utilization. However, reduction of energy consumption leads to larger makespan and decreases load balancing and customer satisfaction. Therefore, it is essential to obtain a set of non-domination solutions for these multiple, conflicting objectives, as a non-linear, multi-objective, NP-hard problem. This paper formulates the energy efficient task scheduling in green data centers as a multi-objective optimization problem so that fuzzy Non-dominated Sorting Genetic Algorithm 2 (NSGA-II) has been applied using the concept of Dynamic Voltage Frequency Scaling (DVFS). In this procedure, we adopted fuzzy crossover and mutation for optimal convergence of initial solutions. For this purpose, the binary variance function of gene values and the mean variance function of objective values are proposed for fuzzy control of mutation rate, increasing the variation in the optimal Pareto front as well as the correct frequency variance function of the processors engaged in scheduling to control the crossover rate. This serves to add the objective of indirect load balancing to the optimization objectives, thereby to replace the three-objective optimization process with four-objective optimization. In the experiments, the proposed NSGA-II with fuzzy algorithm is compared against the NSGA-II algorithm, involving three scheduling strategies namely Green, Time and Cost Oriented Scheduling Strategy. The simulation results illustrate that the newly method finds better solutions than others considering these objectives and with less iteration. In fact, the optimal Pareto solutions obtained from the proposed method improved the objectives of makespan, cost, energy and load balance by 4%, 17%, 1% and 13%, respectively.
کلیدواژههای انگلیسی مقاله
Green Computing, Multi Objective Optimization, Pareto solutions, DVFS, Task Scheduling
نویسندگان مقاله
Saeed Fatehi |
Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran
Homayun Motameni |
Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
Behnam Barzegar |
Faculty member, Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran
Mehdi Golsorkhtabaramiri |
Faculty member, Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_4666_9e091c5c1f1fa05d6c5b9b45247e55af.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات