این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۲، شماره ۲، صفحات ۲۴۰۳-۲۴۱۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Automated prediction of endometriosis using deep learning
چکیده انگلیسی مقاله
Endometriosis is the anomalous progress of cells at the outer part of the uterus. Generally, this endometrial tissue stripes the uterine cavity. The existence of endometriosis is identified through procedures known as Transvaginal Ultra Sound Scan (TVUS), Magnetic Resonance Imaging (MRI), Laparoscopic procedures, and Histopathological slides. Minimal Invasive Surgery (MIS) Laparo-scopic images are recorded in a small camera. To assist the surgeon in identifying their presence of endometriosis, image quality (characteristics) was enhanced for more visual clarity. Deep learning has the ability in recognising the images for classification. The Convolutional Neural Networks (CNNs) perform classification of images on large datasets. The proposed system evaluates the performance by a novel approach that implements the transfer learning model on a well-known architecture called ResNet50. The proposed system train the model on ResNet50 architecture and yielded a training accuracy of 91%, validation accuracy of 90%, precision of 83%, and recall of 82%, which can be applied for larger datasets with better performance. The presented system yields higher Area Under Curve (AUC) of about 0.78. The proposed method yields better performance using ResNet50 compared to other transfer learning techniques.
کلیدواژههای انگلیسی مقاله
TVUS, MRI, Laparoscopic images Deep Learning, Convolution neural network (CNN), Transfer learning, ResNet50
نویسندگان مقاله
S Visalaxi |
Department of Computer Science and Engineering, Hindustan Institute of Technology and Science, Padur, Chennai, India.
T Sudalai Muthu |
Department of Computer Science and Engineering, Hindustan Institute of Technology and Science, Padur, Chennai, India.
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_5383_e1f2eec1fdb3f3493b9c64abbc35ab60.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات