این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۲، شماره Special Issue، صفحات ۱۰۴۷-۱۰۵۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Classification of lung nodules in CT images using conditional generative adversarial – convolutional neural network
چکیده انگلیسی مقاله
Based on Global Cancer 2015 statistics, the lung cancer of all types constitutes 27% of overall cancers while 19.5% of cancer deaths are due to lung cancer. In lieu of this, an effective lung cancer screening test using Computed Tomography (CT) scan is crucial to detect cancer at the early stage. The interpretation of the CT images requires an advanced CAD system of high accuracy for instance, in classifying the lung nodules. Recently, Deep Learning method that is Convolution Neural Network (CNN) shows an outstanding success in lung nodules classification. However, the training of CNN requires a great number of images. Such a requirement is an issue in the case of medical images. Generative adversarial network (GAN) has been introduced to generate new image datasets for CNN training. Thus, the main objective of this study is to compare the performance of CNN architectures with and without the implementation of GAN for lung nodules classification in CT images. Here, the study used Conditional GAN (cGAN) to generate benign nodules images. The classification accuracy of the combined cGAN-CNN architecture was compared among CNN pretraining networks namely GoogleNet, ShuffleNet, DenseNet, and MobileNet based on classification accuracy, specificity, sensitivity, and AUC-ROC values. The experiment was tested on LIDC-IDRI database. The results showed cGAN-CNN architecture improves the overall classification accuracy as compared to CNN alone with the cGAN-ShuffleNet architecture performed the best, achieving 98.38% accuracy, 98.13% specificity, 100% sensitivity and AUC-ROC at 99.90%. Overall, the classification performance of CNN can be improved by integrating GAN architecture to mitigate the constraint of having a large medical image dataset, in this case, CT lung nodules images.
کلیدواژههای انگلیسی مقاله
Computed Tomography, Convolution neural network, Generative adversarial network, Lung nodules, Classification
نویسندگان مقاله
Nur Nabila Mohd Isham |
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan, Malaysia
Siti Salasiah Mokri |
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan, Malaysia
Ashrani Aizuddin Abd Rahni |
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan, Malaysia
Nurul Fatihah Ali |
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan, Malaysia
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_5551_08d0d4142da5a4590f07b71bf65afff4.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات