این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۲، شماره Special Issue، صفحات ۱۴۳۹-۱۴۴۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Deep learning based hand written character recognition for manuscript documents
چکیده انگلیسی مقاله Handwritten manuscripts contain much ancient information related to astrology, medicines, grammar etc. They are of various forms such as palm leaves, paper, stones etc. These manuscripts are preserved by the method of digitization with noise introduced. By using proper filtering as well as denoising methods these noises are eliminated and the images are restored. It is finally required to recognize the handwritten characters automatically from the restored image enabling the researchers and enthusiasts for going through the document very easily. This proposed work deals with the creation of a handwritten characters dataset for all the characters within a specific dimensional area and the recognition of handwritten characters using the deep learning method. First, the handwritten dataset is created from different human handwritings in a specific format, scanned and each character with suitable dimension is obtained by labelling them as per the sequence. Then various forms of convolution network are applied for the character recognition and the results are compared to obtain the suitable net for the Tamil character recognition from the handwritten document.
کلیدواژه‌های انگلیسی مقاله Character recognition, Convolution neural network, Historical Manuscripts

نویسندگان مقاله T Jerry Alexander |
Faculty of Electronics Engineering, Sathyabama Institute of Science & Technology, IT Highway, Chennai, India

S Suresh Kumar |
Principal, Swarnandhra College of Engineering & Technology, Narasapur, India

N R Krishnamoorthy |
School of Electrical & Electronics, Sathyabama Institute of Science & Technology, Chennai, India


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5790_5d8c49e5921f88c0069dbe7b65243564.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات