این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۰، شماره ۴، صفحات ۵۲۹-۵۳۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Audio-visual emotion recognition based on a deep convolutional neural network
چکیده انگلیسی مقاله
Emotion recognition has several applications in various fields, including human-computer interactions. In recent years, various methods have been proposed to recognize emotion using facial or speech information. While the fusion of these two has been paid less attention in emotion recognition. In this paper, first of all, the use of only face or speech information in emotion recognition is examined. For emotion recognition through speech, a pre-trained network called YAMNet is used to extract features. After passing through a convolutional neural network (CNN), the extracted features are then fed into a bi-LSTM with an attention mechanism to perform the recognition. For emotion recognition through facial information, a deep CNN-based model has been proposed. Finally, after reviewing these two approaches, an emotion detection framework based on the fusion of these two models is proposed. The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), containing videos taken from 24 actors (12 men and 12 women) with 8 categories has been used to evaluate the proposed model. The results of the implementation show that the combination of the face and speech information improves the performance of the emotion recognizer.
کلیدواژههای انگلیسی مقاله
Speech emotion recognition, Facial emotion recognition, deep learning, Transfer learning
نویسندگان مقاله
Kh. Aghajani |
Department of Computer Engineering, University of Mazandaran, Babolsar, Iran.
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_2569_8f90f16cc9c85e870b0d47187b4375ef.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات