این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۰، شماره ۴، صفحات ۵۷۹-۵۸۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Vehicle Type, Color and Speed Detection Implementation by Integrating VGG Neural Network and YOLO algorithm utilizing Raspberry Pi Hardware
چکیده انگلیسی مقاله
Vehicle type recognition has been widely used in practical applications such as traffic control, unmanned vehicle control, road taxation, smuggling detection, and so on. In this paper, various techniques such as data augmentation and space filtering have been used to improve and enhance the data. Then, a developed algorithm that integrates VGG neural network and YOLO algorithm has been used to detect and identify vehicles, Then the implementation on the Raspberry hardware board and practically through a scenario is mentioned. Real including image data sets are analyzed. The results show the good performance of the implemented algorithm in terms of detection performance (98%), processing speed, and environmental conditions, which indicates its capability in practical applications with low cost.
کلیدواژههای انگلیسی مقاله
Vehicle Type Detection, Hardware Implementation, Neural network, Raspberry hardware board
نویسندگان مقاله
Mojtaba Nasehi |
Faculty of Electrical Engineering, Islamic Azad University Majlisi Branch, Isfahan, Iran.
Mohsen Ashourian |
Faculty of Electrical Engineering, Islamic Azad University Majlisi Branch, Isfahan, Iran.
Hosein Emami |
Faculty of Electrical Engineering, Islamic Azad University Majlisi Branch, Isfahan, Iran.
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_2629_10a22265c99235cafe1d1013f6131f72.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات