این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۰، شماره ۳، صفحات ۳۴۵-۳۶۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Upgrading the Human Development Index (HDI) to control pandemic mortality rates: A data mining approach to COVID-19
چکیده انگلیسی مقاله
In recent years, the occurrence of various pandemics (COVID-19, SARS, etc.) and their widespread impact on human life have led researchers to focus on their pathology and epidemiology components. One of the most significant inconveniences of these epidemics is the human mortality rate, which has highly social adverse effects. This study, in addition to major attributes affecting the COVID-19 mortality rate (Health factors, people-health status, and climate) considers the social and economic components of societies. These components have been extracted from the countries’ Human Development Index (HDI) and the effect of the level of social development on the mortality rate has been investigated using ensemble data mining methods. The results indicate that the level of community education has the highest effect on the disease mortality rate. In a way, the extent of its effect is much higher than environmental factors such as air temperature, regional health factors, and community welfare. This factor is probably due to the ability of knowledge-based societies to manage the crises, their attention to health advisories, lower involvement of rumors, and consequently lower incidence of mental health problems. This study shows the impact of education on reducing the severity of the crisis in communities and opens a new window in terms of cultural and social factors in the interpretation of medical data. Furthermore, according to the results and comparing different types of single and ensemble data mining methods, the application of the ensemble method in terms of classification accuracy and prediction error has the best result.
کلیدواژههای انگلیسی مقاله
Coronavirus Disease (COVID-19), pandemics, Ensemble Data mining methods, HID Index
نویسندگان مقاله
S. Sareminia |
Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_2406_71ec56cecc3720fde88d49ab09efd505.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات